
Intel® Parallel Studio XE

Using Intel® Compilers v14.0
and later

1

Presented by:
Michael D’Mello
Technical Consulting Engineer
Software Solutions Group, Intel Corporation
email: michael.d’mello@intel.com

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Agenda

•  Why use Intel® C++ Compiler?

•  Basic features of the Intel® C++ Compiler

•  What’s new with the compilers in the 2015 release

•  Programming models

•  Vectorization

•  Offload model

•  Summary

2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

•  Performance
•  Vectorization: Processor specific optimizations
•  Parallelism: Support for all major paradigms

•  Feature Set
•  Multiple OS (and Cross Compilation) support
•  Integration with major IDE’s
•  Conformance to standards
•  Compatibility with gcc* and Microsoft* Compiler

•  For detail see “Compatibility and Portability” sections in:
•  https://software.intel.com/en-us/compiler_14.0_ug_c
•  https://software.intel.com/en-us/compiler_14.0_ug_f

•  Support
•  Premier support: https://premier.intel.com
•  Forums: http://software.intel.com/en-us/forum/

Why use Intel® C++ Compiler?

3

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Common Optimization Switches

4

Description Switch

Disable optimization -O0

Optimize for speed (no code size increase) -O1

Optimize for speed (default) -O2

High-level loop optimization -O3

Create symbols for debugging -g

Multi-file inter-procedural optimization -ipo

Profile guided optimization (multi-step build) -prof-gen
-prof-use

Optimize for speed across the entire program
**warning: -fast def’n changes over time
**don’t use this option unless the target is same as host

-fast
(same as: -ipo –O3 -no-prec-div -
static -xHost)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

General optimization options
•  -O1
ü Optimize code size
ü  Auto Vectorization is turned off

•  -O2
ü  Inlining
ü  Auto Vectorization

•  -O3
ü  Loop optimization
ü Data pre-fetching

•  -ansi-alias / -restrict / -no-prec-div

5
Intel Confidential

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Interprocedural Optimizations
Extends optimizations across file boundaries

Compile & Optimize

Compile & Optimize

Compile & Optimize

Compile & Optimize

file1.c

file2.c

file3.c

file4.c

Without IPO
Compile & Optimize

file1.c

file4.c file2.c

file3.c

With IPO

-ip Only between modules of one source file

-ipo Modules of multiple files/whole application

6
Intel Confidential

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Interprocedural Optimizations (IPO)
Usage: Two-Step Process

Linking
icc -ipo main.o func1.o func2.o

Pass 1

Pass 2

mock object

executable

Compiling
icc -c -ipo main.c
icc –c –ipo func1.c
icc –c –ipo func2.c

7
Intel Confidential

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Profile-Guided Optimizations (PGO)
•  Static analysis leaves many questions open for the

optimizer like:
§  How often is x > y
§  What is the size of count
§  Which code is touched how often

•  Use execution-time feedback to guide (final)
optimization

•  Enhancements with PGO:
§  More accurate branch prediction
§  Basic block movement to improve instruction cache behavior
§  Better decision of functions to inline (help IPO)
§  Can optimize function ordering

§  Switch-statement optimization
§  Better vectorization decisions

8

if (x > y)
 do_this();

 else
 do that();

for(i=0; i<count; ++I
do_work();

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

PGO Usage: Three Step Process

9

Compile + link to add instrumentation
icc -prof_gen prog.c

Execute instrumented program
prog.exe (on a typical dataset)

Compile + link using feedback
icc -prof_use prog.c

Dynamic profile:
12345678.dyn

Instrumented executable:
prog.exe

Merged .dyn files:
pgopti.dpi

Step 1

Step 2

Step 3

Optimized executable:
prog.exe

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

•  Use compiler infrastructure to help developer
•  Vectorization, parallelization and data transformations

•  Extend diagnostic message for failed vectorization and parallelization by
specific hints to fix problem

•  Exploit multi-year experience brought into the compiler
development

•  Performance tuning knowledge based on dealing with numerous
applications, benchmarks and compute kernels

•  Does not influence code generation

•  Use option -guide/-guide-vec/-guide-data-trans etc.

	

10

Guided Automatic Parallelization (GAP)	

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vectorization Example

void f(int n, float *x, float *y, float *z, float *d1, float *d2) {
 for (int i = 0; i < n; i++)

 z[i] = x[i] + y[i] – (d1[i]*d2[i]);
}

GAP Message:

g.c(6): remark #30536: (LOOP) Add -no-alias-args option for better type-based
disambiguation analysis by the compiler, if appropriate (the option will apply for the
entire compilation). This will improve optimizations such as vectorization for the
loop at line 6. [VERIFY] Make sure that the semantics of this option is obeyed for
the entire compilation. [ALTERNATIVE] Another way to get the same effect is to
add the "restrict" keyword to each pointer-typed formal parameter of the routine "f".
This allows optimizations such as vectorization to be applied to the loop at line 6.
[VERIFY] Make sure that semantics of the "restrict" pointer qualifier is satisfied: in
the routine, all data accessed through the pointer must not be accessed through
any other

11
Intel Confidential

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Data Transformation Example

struct S3 {
 int a;
 int b; // hot
 double c[100];
 struct S2 *s2_ptr;
 int d; int e;
 struct S1 *s1_ptr;
 char *c_p;
 int f; // hot
};

peel.c(22): remark #30756: (DTRANS) Splitting the structure 'S3' into two parts will improve data
locality and is highly recommended. Frequently accessed fields are 'b, f'; performance may
improve by putting these fields into one structure and the remaining fields into another
structure. Alternatively, performance may also improve by reordering the fields of the
structure. Suggested field order:'b, f, s2_ptr, s1_ptr, a, c, d, e, c_p'. [VERIFY] The
suggestion is based on the field references in current compilation …

for (ii = 0; ii < N; ii++){
 sp->b = ii;
 sp->f = ii + 1;
 sp++;
}

12
Intel Confidential

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

-  fp-model <name>
-  Method to control the floating point consistency of results

-  fast=[1|2] allows more aggressive optimizations at a slight cost in accuracy/
consistency (fast=1 is the default)

-  precise enables only value safe optimizations

-  double/extended/source controls precision of intermediate results

-  double/extended not available in Intel® Fortran

-  For floating point consistency and reproducibility the recommended
approach is to use -fp-model precise –fp-model source

13

Floating point models

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

•  ICC comes with four optimized libraries

•  The final binary requires access to these libraries

•  Options
•  Include them into OS image

•  Link statically

•  Copy them to the application directory

14

Intel(r) Libraries	

Library Description
libintlc.so Intel support libraries
libimf.so Intel math library
libsvml.so Short vector math library
libirng.so Random number generator

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

•  -x <Target>
•  Generate specialized code (for Intel® processors) for the specified instruction set

•  -m <Target> (/arch: on Windows)
•  Generates optimized code that make use of the specified instruction sets

•  Produces binaries that should run on non-Intel processors that implement the capabilities
specified by <Target> (for example: SSE3, SSE2, IA32 etc.)

•  -ax <Target>
•  Generates specialized code path for Intel® processors + default code path

•  Choice of path taken is made by automatic dispatch)

•  Multiple code paths may be specified e.g.: -ax SSE4.1,SSE3

•  Default code path can be modified by additionally using –x or –m

Note: -xhost
•  Optimize for highest instruction set supported by compilation platform

15

Processor Specific Optimizations	

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

•  New "icl" and "icl++" compilers on OS X* for improved compatibility with the clang/
LLVM* toolchain

•  gcc compatibility features:

•  -ansi-alias enabled by default at –O2 and above on Linux* C++ to match gcc* -fstrict-aliasing defaults

•  gcc-compatible function multiversioning

•  Full language support for C++ 11

•  -std=c++11, /Qstd=c++11

•  Virtual overrides, Inheriting constructors, Deprecation of exception specifications, User defined
literals

•  OpenMP 4.0: Except user defined reductions

•  Offload (for C, C++) to Intel® Graphics Technology

•  Redesigned optimization reports

•  Improved lambda function debugging

16

What’s new in Composer XE v15.0
(Beta) (1 of 3)	

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

•  Full Fortran 2003 support

•  parametrized derived types added

•  Fortran 2008 Blocks support added

•  Nearly complete OpenMP* 4.0

•  only missing user defined reductions

•  Performance improvements in Vectorization

•  Fortran option –init=snan to initialize all uninitialized SAVEd scalar
and array variables of type REAL and COMPLEX to signaling NaNs

•  gdb* debugger supports Fortran

•  Intel debugger removed

17

What’s new in Composer XE v15.0
(Beta) (2 of 3)	

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

•  Ability to create custom install packages from online install

•  Compiler option –no-opt-dynamic-align to disable generation of multiple code paths
depending on alignment of data

•  Keyword versions of SIMD pragmas added: _Simd, _Safelen, _Reduction

•  Use arithmetical & logical operators with SIMD data types (like __m128)
__intel_simd_lane() intrinsic to represent simd lane number in a SIMD vector function

•  -fast/-Ofast enables –fp-model fast=2

•  aligned_new header

•  Permit non-contiguous data transfers on #pragma offload

18

What’s new in Composer XE v15.0
(Beta) (3 of 3)	

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Concurrent Containers
Common idioms for concurrent access

-  a scalable alternative to a serial container
with a lock around it

Miscellaneous
Thread-safe timers

Generic Parallel Algorithms
Efficient scalable way to exploit the power

of multi-core without having to start
from scratch

Task scheduler
The engine that empowers parallel

algorithms that employs task-stealing
to maximize concurrency Synchronization Primitives

User-level and OS wrappers for
mutual exclusion, ranging from atomic

operations to several flavors of
mutexes and condition variables

Memory Allocation
Per-thread scalable memory manager and false-sharing free allocators

Intel® Threading Building Blocks

Threads
OS API wrappers

Thread Local Storage
Scalable implementation of thread-local

data that supports infinite number of TLS

TBB Graph

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

High level picture of TBB approach to parallelism

Section of
user code to
be parallelized

Representation in
terms of tasks TBB managed

Thread Pool Cores

Representation of code
as tasks done by user.
•  Implicitly using high
level functions
• Explicitly using
TBB::task

Mapping of tasks to threads
managed by TBB scheduler.
Key elements:
• Non pre-emptive (unfair)
scheduling policy
• Task stealing

Mapping of threads to
cores done by OS
Key element:
•  Fair scheduling

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Cilk™ Plus - Overview

Simple Keywords
Set of keywords, for expression of task

parallelism:
cilk_spawn
cilk_sync
cilk_for

Reducers
(Hyper-objects)

Reliable access to nonlocal variables without
races

cilk::reducer_opadd<int> sum(3);

Array Notation
Provide data parallelism for sections of arrays or

whole arrays
mask[:] = a[:] < b[:] ? -1 : 1;

Elemental Functions
Define actions that can be applied to

whole or parts of arrays or scalars

Execution parameters
Runtime system APIs, Environment variables, pragmas

Task parallelism

Data parallelism

21 Intel Confidential

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Cilk™ Plus - Overview

•  Intel® Cilk™ Plus (Language Extension to C/C++)

•  Multicore Programming with Intel® Cilk™ Plus

Easier Task & Data Parallelism
3 simple Keywords:
cilk_for, cilk_spawn, cilk_sync

Intel® Cilk™ Plus Array Notation
Save time with powerful vectorization

22

Minimize Software Re-Work for New Hardware
22

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vectorization and Auto-Vectorization
SIMD – Single Instruction Multiple Data

•  Scalar mode

–  one instruction produces
one result

•  SIMD processing
–  with SSE or AVX instructions
–  one instruction can produce multiple

results

+

a[i]

b[i]

a[i]+b[i]

+

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

for (i=0;i<=MAX;i++)
 c[i]=a[i]+b[i];

7/23/14
23

a

b

a+b

+

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vectorization is Achieved through SIMD
Instructions & Hardware

24

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0 128 Intel® SSE
Vector size: 128bit
Data types:
 8,16,32,64 bit integers
 32 and 64bit floats
VL: 2,4,8,16
Sample: Xi, Yi bit 32 int / float

Intel® AVX
Vector size: 256bit
Data types: 32 and 64 bit floats
VL: 4, 8, 16
Sample: Xi, Yi 32 bit int or float
First introduced in 2011

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0 127
X8

Y8

X8opY8

X7

Y7

X7opY7

X6

Y6

X6opY6

X5

Y5

X5opY5

128 255

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD Data Types for
Intel® MIC Architecture

Not imp-
lemented

16x floats

8x doubles

16x 32-bit integers

8x 64-bit integers

32x 16-bit shorts

64x 8-bit bytes

now

now

25

limited

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD Instruction Enhancements

70 instr
Single-
Precision
Vectors
Streaming
operations

144 instr
Double-
precision
Vectors
8/16/32
64/128-bit
vector
integer

13 instr
Complex
Data

32 instr
Decode

47 instr
Video
Graphics
building
blocks
Advanced
vector instr

SSE SSE2 SSE3 SSSE3 SSE4.1 SSE4.2

8 instr
String/XML
processing
POP-Count
CRC

AES-NI

7 instr
Encryption
and
Decryption
Key
Generation

AVX

~100 new
instr.
 ~300 legacy
sse instr
updated
256-bit
vector
3 and 4-
operand
instructions

26
Intel Confidential

Sandy bridge
Ivy bridge

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Software considerations - Vectorization

Ease	
 of	
 use	
 Compiler:	
 	

Auto-­‐vectoriza6on	
 (no	
 change	
 of	
 code)	

Programmer	
 control	

Compiler:	
 	

Auto-­‐vectoriza6on	
 hints	
 (#pragma vector,	
 …)	

SIMD	
 intrinsic	
 class	

(e.g.:	
 F32vec,	
 F64vec,	
 …)	

Vector	
 intrinsic	

(e.g.:	
 _mm_fmadd_pd(…),	
 _mm_add_ps(…),	
 …)	

Assembler	
 code	

(e.g.:	
 [v]addps,	
 [v]addss,	
 …)	

Compiler:	
 	

Intel®	
 Cilk™	
 Plus	
 Array	
 Nota6on	
 Extensions	

7/23/14 27

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

•  Countable
•  Loop count must be known at runtime

•  Single entry and exit

•  Straight line code
•  No switch statements for example

•  Innermost loop of a nest

•  No function calls
•  Exceptions: intrinsics, inlined functions

•  Use /opt-report-phase ipo_inl for inlining report

28

What sorts of loops can be vectorized?

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

•  Disable vectorization
§  -no-vec

§  #pragma novector

•  Enforce for a single loop if semantically correct
§  #pragma vector always

•  Ignore vector dependencies
§  #pragma ivdep

•  “Enforce” vectorization
§  #pragma simd

•  Generate multiple, feature-specific auto-dispatch code paths for
Intel® processors

§  -ax<code>
	
 29

Vectorization Fine-Control	

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Compiler Reports (prior to v15.0)

Compiler reporting switches: -vec-report<n>, -par-
report<n>, openmp-report<n>, -opt-report<n>

Details for –vec-report<n>

n=0: No diagnostic information
n=1: (Default) Loops successfully vectorized
n=2: Loops not vectorized – and the reason why not
n=3: Adds dependency Information
n=4: Reports only non-vectorized loops
n=5: Reports only non-vectorized loops and adds dependency info
n=6: Reports on vectorized and non-vectorized loops and any proven
or assumed data dependences.
n=7: reports vectorization summary information and currently requires
the use of a Python script to interpret. More information can be found
at
http://software.intel.com/en-us/articles/vecanalysis-python-script-for-
annotating-intelr-compiler-vectorization-report

30

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

•  The following is applicable only to Intel® Composer XE 2015 (currently in
Beta)

•  General
•  Introduced to further enhance the value of reports

•  Applicable to C, C++, and Fortran

•  Applicable to Windows*, Linux*, and OS X*

•  Main switches

•  -opt-report=N (Linux* and OS X*)

•  N = 1 – 5 for increasing levels of detail (default = 2)

•  -opt-report-phase=str[,str1,str2,..]
•  str=loop, par, vec, openmp, ipo, pgo, cg, offload, tcollect, all

•  -opt-report-file=stdout| stderr | filename

31

General note on compiler reports in
Intel® Composer XE 2015 (Beta)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

How to Align Data (C/C++)
Allocate memory on heap aligned to n byte boundary:

 void* _mm_malloc(int size, int n)
 int posix_memalign(void **p, size_t n, size_t size)

Alignment for variable declarations:
 __attribute__((aligned(n))) var_name or
 __declspec(align(n)) var_name

And tell the compiler…
 #pragma vector aligned

•  Asks compiler to vectorize, overriding cost model, and assuming all array
data accessed in loop are aligned for targeted processor

•  May cause fault if data are not aligned

 __assume_aligned(array, n)

•  Compiler may assume array is aligned to n byte boundary

32

n=64 for Intel® Xeon Phi™ coprocessors, n=32 for AVX, n=16 for SSE

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

How to Align Data (Fortran)
Align array on an “n”-byte boundary (n must be a power of 2)

 !dir$ attributes align:n :: array
•  Works for dynamic, automatic and static arrays (not in common)

For a 2D array, choose column length to be a multiple of n, so that consecutive
columns have the same alignment (pad if necessary)

 -align array64byte compiler tries to align all array types

And tell the compiler…

 !dir$ vector aligned
•  Asks compiler to vectorize, overriding cost model, and assuming all array

data accessed in loop are aligned for targeted processor
•  May cause fault if data are not aligned
 !dir$ assume_aligned array:n [,array2:n2, …]

•  Compiler may assume array is aligned to n byte boundary

33

n=64 for Intel® Xeon Phi™ coprocessors, n=32 for AVX, n=16 for SSE

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vectorization and Intel® Cilk™ Plus

Vectorization is so important
 è consider explicit vector programming

Intel® Cilk™ Plus array notation
•  Compiler can assume LHS does not alias RHS (unlike Fortran)

 r[n:n] = sqrtf(x[0:n]*x[0:n] + y[0:n]*y[0:n]);

and simd-enabled functions
•  Allow vectorization over function calls, without inlining

__attribute((vector)) float myfun(float a,float x,float y)
{…}

 z[:] = myfunl(a[:], b[:], c[:]);

 #pragma simd
•  Directs compiler to vectorize if at all possible
•  Overrides all dependencies and cost model

•  More aggressive than pragmas ivdep and vector always
•  Semantics modeled on OpenMP parallel pragmas

•  Private and reduction clauses required for correctness
34

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Explicit Vector Programming:
Intel® Cilk™ Plus Array notation

Array notation asks the compiler to vectorize
•  asserts this is safe (for example, x<0)
•  Improves readability

35

void addit(double* a, double* b,
int m, int n, int x)
{
 for (int i = m; i < m+n; i++) {
 a[i] = b[i] + a[i-x];
 }
}

void addit(double* a, double * b,
int m, int n, int x)
{
// I know x<0
 a[m:n] = b[m:n] + a[m-x:n];
}

loop was not vectorized:
existence of vector dependence. LOOP WAS VECTORIZED.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Explicit Vector Programming:
Intel® Cilk™ Plus pragma example
Using #pragma simd (C/C++) or !DIR$ SIMD (Fortran)
or #pragma omp simd (OpenMP 4.0)

•  Use when you KNOW that a given loop is safe to vectorize
•  The Intel Compiler will vectorize if at all possible

 (will ignore dependency or efficiency considerations)
•  Minimizes source code changes needed to enforce vectorization

void addit(double* a, double* b,
int m, int n, int x)
{
 for (int i = m; i < m+n; i++) {
 a[i] = b[i] + a[i-x];
 }
}

void addit(double* a, double * b,
int m, int n, int x)
{
#pragma simd // I know x<0
 for (int i = m; i < m+n; i++) {
 a[i] = b[i] + a[i-x];
 }
}

loop was not vectorized:
existence of vector dependence. SIMD LOOP WAS VECTORIZED.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD-enabled Function

7/23/14
37

Compiler generates vector version of a scalar function that can
be called from a vectorized loop:
 __attribute__((vector(uniform(y, xp, yp))))

 float func(float x, float y, float xp, float yp) {
 float denom = (x-xp)*(x-xp) + (y-yp)*(y-yp);
 denom= 1./sqrtf(denom);
 return denom;
}

#pragma simd private(x) reduction(+:sumx)
 for (i=1; i<nx; i++) {
 x = x0 + (float)i * h;
 sumx = sumx + func(x, y ,xp, yp);
 enddo

37

These clauses are
required for correctness,
just like for OpenMP

func_vec.f(1): (col. 21) remark: FUNCTION WAS VECTORIZED.

 SIMD LOOP WAS VECTORIZED.

y, xp and yp are constant,
x can be a vector

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Prefetching - automatic
Compiler prefetching is on by default for the Intel® Xeon Phi™
coprocessor at –O2 and above

•  Prefetches issued for regular memory accesses inside loops
•  But not for indirect accesses a[index[i]]
•  More important for Intel Xeon Phi coprocessor (in-order)

 than for Intel® Xeon® processors (out-of-order)
•  Very important for apps with many L2 cache misses

Use the compiler reporting options to see detailed diagnostics of
prefetching per loop

 -opt-report-phase hlo –opt-report 3 e.g.
Total #of lines prefetched in main for loop at line 49=4
Using noloc distance 8 for prefetching unconditional memory reference in stmt at line 49
Using second-level distance 2 for prefetching spatial memory reference in stmt at line 50

 -opt-prefetch=n (4 = most aggressive) to control
 -opt-prefetch=0 or –no-opt-prefetch to disable
 -opt-prefetch-distance =<n1> [,<n2>] to tune how far ahead to prefetch

38

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Prefetching - manual
 Use intrinsics
 _mm_prefetch((char *) &a[i], hint);

 See xmmintrin.h for possible hints (for L1, L2, non-temporal, …)

 MM_PREFETCH(A, hint) for Fortran

•  But you have to figure out and code how far ahead to prefetch
•  Also gather/scatter prefetch intrinsics, see zmmintrin.h and compiler user

guide, e.g. _mm512_prefetch_i32gather_ps

 Use a pragma / directive (easier):
 #pragma prefetch a [:hint[:distance]]
 !DIR$ PREFETCH A, B, …

•  You specify what to prefetch, but can choose to let compiler figure out how
far ahead to do it.

 Hardware L2 prefetcher is also enabled by default
•  If software prefetches are doing a good job,

then hardware prefetching does not kick in

 39

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Streaming Stores
Write directly to memory bypassing cache

•  for “nontemporal” data that are not read and will not be reused
•  avoids “read for ownership” to get line into cache

•  Reduces memory bandwidth requirements
•  Keeps cache available for useful work, avoids “pollution”

#pragma vector nontemporal (v1, v2, …) hint to compiler
 for	
 (int	
 chunk	
 =	
 0;	
 chunk	
 <	
 OptPerThread;	
 chunk	
 +=	
 CHSIZE)	

{	

#pragma	
 simd	
 vectorlength(CHSIZE)	

#pragma	
 vector	
 aligned	

#pragma	
 vector	
 nontemporal	
 (CallResult,	
 PutResult)	

	
 	
 	
 	
 	
 	
 for(int	
 opt	
 =	
 chunk;	
 opt	
 <	
 (chunk+CHSIZE);	
 opt++)	

	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 float	
 T	
 =	
 OptionYears[opt];	

	
 	
 	
 	
 	
 	
 	
 	
 	
 float	
 X	
 =	
 OptionStrike[opt];	

	
 	
 	
 	
 	
 	
 	
 	
 	
 float	
 S	
 =	
 StockPrice[opt];	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ……	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 CallVal	
 	
 =	
 S	
 *	
 CNDD1	
 -­‐	
 XexpRT	
 *	
 CNDD2;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 PutVal	
 	
 =	
 CallVal	
 	
 +	
 	
 XexpRT	
 -­‐	
 S;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 CallResult[opt]	
 =	
 CallVal	
 ;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 PutResult[opt]	
 =	
 PutVal	
 ;	

	
 	
 	
 	
 	
 	
 }	

}	

•  No Streaming Stores:
448 Bytes read/write per
iteration

•  With Streaming Stores:
320 Bytes read/write per
iteration

•  -vec-report6 shows
what the compiler did

bs_test_sp.c(215): (col. 4) remark: vectorization support: streaming store was generated for CallResult.
bs_test_sp.c(216): (col. 4) remark: vectorization support: streaming store was generated for PutResult. 40

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

OpenMP on the Coprocessor

The basics work just like on the host CPU
•  For both native and offload models
•  Need to specify -openmp

There are 4 hardware thread contexts per core
•  Need at least 2 x ncore threads for good performance

•  For all except the most memory-bound workloads

•  Often, 3x or 4x (number of available cores) is best
•  Very different from hyperthreading on the host!

•  -opt-threads-per-core=n advises compiler how many
 threads to optimize for

•  If you don’t saturate all available threads, be sure to set KMP_AFFINITY
to control thread distribution

41

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

OpenMP defaults

OMP_NUM_THREADS defaults to
•  1 x ncore for host (or 2x if hyperthreading enabled)

•  4 x ncore for native coprocessor applications

•  4 x (ncore-1) for offload applications
•  one core is reserved for offload daemons and OS

(typically the highest numbered)

•  Defaults may be changed via environment variables or via API calls
on either the host or the coprocessor

42

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Target OpenMP environment (offload)

Use target-specific APIs to set for coprocessor target only, e.g.
 omp_set_num_threads_target() (called from host)
 omp_set_nested_target() etc.
•  Protect with #ifdef __INTEL_OFFLOAD, undefined with –no-offload

•  Fortran: USE MIC_LIB and OMP_LIB C: #include <offload.h>

Or define coprocessor – specific versions of env variables using
 MIC_ENV_PREFIX=PHI (no underscore)
•  Values on coprocessor no longer default to values on host
•  Set values specific to coprocessor using
 export PHI_OMP_NUM_THREADS=120 (all coprocessors)

 export PHI_2_OMP_NUM_THREADS=180 for coprocessor #2, etc.

 export PHI_3_ENV=“OMP_NUM_THREADS=240|KMP_AFFINITY=balanced”

43

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Thread Affinity Interface

Allows OpenMP threads to be bound to physical or logical cores
•  export environment variable KMP_AFFINITY=

•  physical use all physical cores before assigning threads to other
 logical cores (other hardware thread contexts)

•  compact assign threads to consecutive h/w contexts on same
 physical core (e.g. to benefit from shared cache)

•  scatter assign consecutive threads to different physical cores
 (eg to maximize access to memory)

•  balanced blend of compact & scatter
 (currently only available for Intel® MIC Architecture)

•  Helps optimize access to memory or cache
•  Particularly important if all available h/w threads not used

•  else some physical cores may be idle while others run multiple threads

•  See compiler documentation for (much) more detail

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Example – share work between
coprocessor and host using OpenMP

omp_set_nested(1);
#pragma omp parallel private(ip)
{
#pragma omp sections
 {
#pragma omp section
/* use pointer to copy back only part of potential array,

 to avoid overwriting host */
#pragma offload target(mic) in(xp) in(yp) in(zp) out(ppot:length(np1))
#pragma omp parallel for private(ip)
 for (i=0;i<np1;i++) {
 ppot[i] = threed_int(x0,xn,y0,yn,z0,zn,nx,ny,nz,xp[i],yp[i],zp[i]);
 }
#pragma omp section
#pragma omp parallel for private(ip)
 for (i=0;i<np2;i++) {
 pot[i+np1] =
 threed_int(x0,xn,y0,yn,z0,zn,nx,ny,nz,xp[i+np1],yp[i+np1],zp[i+np1]);
 }
 }
}

45

Top level, runs on host
Runs on coprocessor
Runs on host

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

More information on Intel’s software offerings and services at
http://software.intel.com

Support: http://premier.intel.com

C++ Compiler Basics:
https://software.intel.com/en-us/c-compilers#pid-16692-920

Compilation for Intel® Xeon PHI Coprocessor:
https://software.intel.com/en-us/articles/compilation-for-intel-xeon-phi-
coprocessor-vectorization-alignment-pre-fetch-more/

Intel® Software Development Tools 2015 Beta:
https://software.intel.com/en-us/articles/intel-software-development-
tools-2015-beta (a number of useful videos are available)

	

46

Useful Links	

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

•  For tutorials on various aspects of vectorization including SIMD
pragmas

•  https://software.intel.com/articles/vectorization-essentials

•  For information on asynchronous computation via the offload
model:

1.  https://software.intel.com/en-us/videos/advanced-intel-xeon-phi-
coprocessor-workshop-memory-part-1-basics

2.  https://software.intel.com/en-us/videos/advanced-intel-xeon-phi-
coprocessor-workshop-memory-part-2-performance-tuning

•  For a glimpse of a slightly different use case of the offload
model:

•  https://software.intel.com/en-us/videos/intel-c-compiler-unveils-compute-
power-of-intel-graphics-technology-for-general-purpose

47

Some more useful links

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

48

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

void no_vec(float a[], float b[], float c[])

 {

 int i = 0.;

 while (i < 100) {

 a[i] = b[i] * c[i];

 // this is a data-dependent exit condition:

 if (a[i] < 0.0) break;

 ++i ;

 }

 }

> icc -c -O2 -vec-report2 two_exits.cpp

two_exits.cpp(4) (col. 9): remark: loop was not vectorized:

nonstandard loop is not a vectorization candidate.

50

Single entry and exit

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

#include <math.h>

void quad(int length, float *a, float *b,

 float *c, float *restrict x1, float *restrict x2)

{

 for (int i=0; i<length; i++) {

 float s = b[i]*b[i] - 4*a[i]*c[i];

 if (s >= 0) { s = sqrt(s) ; x2[i] = (-b[i]+s)/(2.*a[i]); x1[i] = (-b[i]-s)/(2.*a[i]);

 }

 else { x2[i] = 0.; x1[i] = 0.;

 }

 }

}

> icc -c -restrict -vec-report2 quad.cpp

 quad5.cpp(5) (col. 3): remark: LOOP WAS VECTORIZED.

51

Straight Line Code

